The State of the Art in Multi-Country Cancer RWE? ORWIC: Ovarian Real World International Consortium

Geoff Hall

Consultant in Medical Oncology, Leeds Cancer Centre

Prof in Digital Health and Cancer Medicine

Clinical Lead for DATA-CAN, the Health Data Research UK Hub for Cancer

http://www.leedsth.nhs.uk/

H Hospitals

- Leeds General Infirmary
- St' James's University Hospital
- Chapel Allerton Hospital
- Leeds Children's Hospital
- Seacroft Hospital
- Wharfedale Hospital

- The Leeds Teaching Hospitals NHS Trust (LTHT) is one of the largest trusts in the UK
- The trust has 6 sites, including paediatric centre
- One of the largest teaching hospitals in Europe

- Treats ~5% of UK population with 1,200 inpatient beds together with critical care and day case beds
- Local district hospital for population of Leeds (~1M)
- Specialist cancer services to Yorkshire (~2.7M)
- Regional centre for a number of specialist cancer (~5.7M)

- Largest provider of specialist services in UK
- Largest integrated Cancer Centre in UK

Clinical trials - the gold standard to define new pathways of care

Clinical trials - the gold standard to define new pathways of care

Clinical trials - the gold standard to define new pathways of care

Clinical trials – are they really a gold standard?

- Clinical trials
 - "Perfect" data on an imperfect population

Clinical trials – are they really a gold standard?

- Clinical trials
 - "Perfect" data on an imperfect population

- Real World Evidence
 - Imperfect data on the perfect population

PPM and Cancer Outcomes – 2003 to today

Instant analysis of uncurated data within clinic Excellent for counts, overall survival

Strata	Total	Events	Censored	Surv	Surv	Surv	Surv	Surv	Surv
				Day30	Day60	Day90	Year1	Year2	Year5
Breast - Breast - Carcinoma in Situ	1218	64	1154	100.00%	100.00%	99.91%	99.05%	97.73%	93.08%
Breast - Breast - Mal.Neoplasm	10621	2488	8133	99.31%	98.86%	98.44%	94.71%	88.61%	72.46%
UGI - Oesophagus - Mal.Neoplasm	2285	1780	505	94.93%	89.21%	83.84%	47.56%	27.88%	13.31%
UGI - Stomach - Mal.Neoplasm	1754	1370	384	92.73%	84.76%	77.68%	45.39%	27.09%	15.44%
LGI - Small Intestine - Mal.Neoplasm	188	104	84	94.68%	89.89%	87.74%	69.72%	53.76%	39.24%
LGI - Colon - Mal.Neoplasm	3819	2276	1543	94.59%	91.16%	88.30%	72.23%	58.28%	34.19%
LGI - Rectum - Mal.Neoplasm	3130	1617	1513	98.27%	95.96%	93.38%	77.49%	61.49%	36.11%
LGI - Rectosigmoid Junction - Mal.Neoplasm	532	325	207	95.85%	92.82%	91.29%	76.07%	58.41%	36.40%
LGI - Anus - Mal.Neoplasm	343	143	200	98.83%	98.83%	97.03%	80.91%	70.17%	53.65%
HPB - Bilary Unspec - Mal.Neoplasm	225	160	65	93.33%	90.67%	86.21%	64.02%	37.92%	20.73%
HPB - Gallbladder - Mal.Neoplasm	180	153	27	91.06%	79.33%	70.95%	33.76%	19.15%	9.11%
HPB - Liver & Bile Duct - Mal.Neoplasm	1131	868	263	90.05%	82.29%	75.56%	47.24%	29.62%	14.85%
HPB - Pancreas - Mai.Neoplasm	1350	1219	131	86.94%	74.97%	66.10%	27.27%	11.47%	4.62%
Lung - Bronchus & Lung - Mal.Neoplasm	10218	8863	1355	88.06%	78.65%	71.61%	33.91%	17.54%	6.90%
Lung - Heart, Mediastinum - Mal.Neoplasm	76	66	10	86.84%	76.32%	68.42%	36.01%	22.78%	5.84%
Lung - Mesothelioma	711	624	87	95.77%	91.21%	85.27%	38.07%	12.29%	2.16%
Lung - Thymus - Mal.Neoplasm	35	18	17	97.14%	97.14%	94.20%	84.74%	77.96%	50.91%
Gynae - Cervix Uteri - Mal.Neoplasm	1124	393	731	99.27%	97.69%	96.25%	84.26%	72.51%	57.73%
Gynae - Corpus Uteri - Mal.Neoplasm	2193	661	1532	99.30%	98.35%	97.06%	88.41%	77.44%	59.77%
Gynae - Ovary - Mal.Neoplasm	1540	859	681	96.56%	93.68%	91.25%	78.35%	62.30%	35.02%
Gynae - Uterus Unspec - Mal.Neoplasm	161	89	72	96.83%	93.59%	90.97%	71.04%	60.16%	37.26%
Gynae - Vagina - Mal.Neoplasm	109	65	44	99.08%	97.23%	95.38%	72.00%	48.25%	36.72%
Gynae - Vulva - Mal.Neoplasm	363	154	209	98.86%	97.11%	95.04%	78.86%	68.96%	52.26%

Leeds Real World Evidence – Patterns of Recurrence

- 1000 sequential breast cancer diagnoses
- 1999 to 2001
- Leeds only cases Surgery, ChemoRx, RadioRx
- Case note review and curation
- Define each recurrence until last review or death
- Assess patterns of recurrence
- Describe pathways of care from diagnosis to death

Case Study – Breast cancer & Novartis

- ER/PR +ve, HER2 -ve breast cancer
 - Patient characteristics (e.g. histology, biomarkers, stage)
 - Treatment patterns (lines of chemotherapy, radiotherapy and oncology surgery)
 - Outcomes from diagnosis, recurrence(s) to death

Characteristic n (% of sub-cohort)	Study cohort (N = 196)	Diagnosed metastatic (N = 72)	Progressed metastatic (N = 124)
Age at diagnosis, median (range)	67 years (33-92)	69 years (33-92)	67 years (33-90)
Pre/peri-menopausal ^a	25 (12.8%)	11 (15.3%)	14 (11.3%)
Post-menopausal	167 (85.2%)	60 (83.3%)	107 (86.3%)
Morphology (1° tumour)			
Infiltrating duct carcinoma, NOSb	117 (59.7%)	40 (55.6%)	77 (62.1%)
Lobular carcinoma, NOS	29 (14.8%)	11 (15.3%)	18 (14.5%)
Carcinoma, NOS	26 (13.3%)	12 (16.7%)	14 (11.3%)
Other	24 (12.2%)	9 (12.5%)	15 (12.1%)
Non-visceral metastasis ^c	163 (83.2%)	60 (83.3%)	103 (83.1%)
Bone	133 (67.9%)	51 (70.8%)	82 (66.1%)
Lymph nodes	68 (34.7%)	27 (37.5%)	41 (33.1%)
Skin and soft tissue	29 (14.8%)	8 (11.1%)	21 (16.9%)
Visceral (incl. CNS) metastasis	119 (60.7%)	44 (61.1%)	75 (60.5%)
Pulmonary	64 (32.7%)	26 (36.1%)	38 (30.6%)
Liver	56 (28.6%)	24 (33.3%)	32 (25.8%)
Pleura	33 (16.8%)	9 (12.5%)	24 (19.4%)
Peritoneum	10 (5.1%)	<5	<10
CNS	8 (4.1%)	<5	<5

Figure 1. Patients receiving treatment during follow-up, by intent and menopausal status

Figure 2. Categories of sequential non-curative treatment received (up to 3 LoT shown). The 7 most common regimen sequences are named and corresponding numbers of patients shown

Case Study – Lung Cancer – BMS

- Non-small cell lung cancer
 - Patient characteristics (e.g. histology, biomarkers, stage)
 - Treatment patterns (lines of chemotherapy, and surgery)
 - Outcomes from diagnosis, recurrence(s) to death

9th European Lung Cancer Congress (ELCC)

Multi-centre study – Ovarian cancer - ORWIC

Epithelial ovarian cancer

- Intermediate frequency cancer
- Complex treatment pathways, multiple lines of therapy
- Recent introduction of targeted therapy, variably funded internationally
- Diverse international standards of care

ORWIC

- Multi-centre study, multi-nation study
- Unify disparate models of data capture and curation
- Respect opt-out but no formal consent
- Accept sharing patient level data is not possible (GDPR, IG, privacy)
- Establish common data analysis

Multi-centre study – Ovarian cancer - ORWIC

- Epithelial ovarian cancer
 - Patient characteristics (e.g. histology, biomarkers, stage, breast cancer)
 - Genetic and molecular phenotype (germline, somatic BRCA, HRD)
 - Treatment patterns (surgery, lines of chemotherapy)
 - Outcomes from diagnosis & recurrence(s) to death

- Common data model agreed
- Data curated by each centre to CDM
- Single analytic script defined (R package)
- Parallel analysis of data by each site
- · Output of analysis combined

Multi-centre study – Ovarian cancer – ORWIC

Table 1: Patient characteristics at diagnosis									
Overall Study Cohort		ICO	Frankfurt	Yonsei	Cluj	IPOP	Leeds		
		696	140	851	446	268	515		
Age Group	<45	45 (6.5%)	17 (12.1%)	166 (20.4%)	81 (18.2%)	12 (4.5%)	20 (3.9%)		
	45-59	174 (25.0%)	54 (38.6%)	440 (54.1%)	209 (46.9%)	75 (28.1%)	125 (24.3%)		
	60-74	329 (47.3%)	51 (36.4%)	217 (26.7%)	139 (31.2%)	114 (42.7%)	235 (45.6%)		
	75+	148 (21.3%)	18 (12.9%)	28 (3.4%)	17 (3.8%)	67 (25.1%)	135 (26.2%)		
	I	73 (12.5%)	21 (15.0%)	232 (27.3%)	101 (22.7%)	39 (14.6%)	56 (10.9%)		
at diagnosis	II	27 (4.6%)	8 (5.7%)	68 (8.0%)	37 (8.3%)	18 (6.7%)	25 (4.9%)		
	III	323 (55.2%)	72 (51.4%)	279 (32.8%)	259 (58.1%)	106 (39.7%)	293 (56.9%)		
	IV	162 (27.7%)	35 (25.0%)	211 (24.8%)	49 (11.0%)	94 (35.2%)	140 (27.2%)		
	Missing/Unknown	111 (15.9%)	4 (2.9%)	61 (7.5%)		11 (4.1%)	<6		

2,916 patients

Multi-centre study – Ovarian cancer – ORWIC

Debulking surgery

Multi-centre study – Ovarian cancer – ORWIC – First-line therapy

Multi-centre study – Ovarian cancer – ORWIC – Second line therapy

Multi-centre study – Ovarian cancer – ORWIC

Multi-centre study – Ovarian cancer – ORWIC

Maintenance

LoT outcome

40% -20% -0% -

Therapy

Multi-centre study – Ovarian cancer - ORWIC

- Epithelial ovarian cancer
 - Patient characteristics (e.g. histology, biomarkers, stage)
 - Treatment patterns (lines of chemotherapy, and surgery)
 - Outcomes from diagnosis, recurrence(s) to death

- Common data model agreed
- Data curated by each centre to CDM
- Single analytic script defined (R package)
- Parallel analysis of data by each site
- Output of analysis combined

How could we improve?

RWE – the data-model

We need to agree a common language for Real World Evidence

We need to agree key definitions

Date of diagnosis?

Progression or Time to Next Treatment?

We need a common data model

RWE – the data-model

We need to agree a common language for Real World Evidence

We need to agree key definitions

Date of diagnosis?

Progression or Time to Next Treatment?

We need a common data model

Observational Medical Outcomes Partnership
OMOP

RWE – Data Curation and plain text

- 85% of EHR data is plain text 'Impossible' to analyse at scale
- Coded data will never replace plain text in EPRs
 Cannot capture the nuance of a clinical interaction
- Clinicians should not be forced to adapt to technology
 Technology should adapt to clinicians

Problem: We need Next Generation Informatics

RWE – Data Curation and plain text

- 85% of EHR data is plain text 'Impossible' to analyse at scale
- Coded data will never replace plain text in EPRs
 Cannot capture the nuance of a clinical interaction
- Clinicians should not be forced to adapt to technology
 Technology should adapt to clinicians

Problem: We need Next Generation Informatics

Solution: AI/ML, Natural Language Processing

RWE – Privacy and IG, Rules and Regulations

- Consent or permission ?
 - UK individual opt-out
 - Explicit permission global or study-specific
- Sharing data between centres is challenging
- Sharing data between countries is very complex

RWE – Privacy and IG, Rules and Regulations

- Consent or permission?
 - UK individual opt-out
 - Explicit permission global or study-specific
- Sharing data between centres is challenging
- Sharing data between countries is very complex
- Do NOT bring the data to the analysis
- Bring the analysis to the data
- FEDERATED ANALYSIS

RWE – Extended datasets

ORWIC – State of the Art?

I hope not

- Shared ambition to use every patient's experience to help others
- Patient, public and carer support and active involvement

- Application of AI and ML to curation including NLP
- Common Data Model OMOP
- Federated analytics
- Extend data to digital imaging and pathology, molecular/genetic, PROMs

Thankyou!

g.hall@leeds.ac.uk